Abstract

The neuropeptide arginine vasotocin (AVT: the avian homolog of vasopressin) has numerous functional roles including mediating social behaviors, coregulating the adrenocortical stress response and maintaining water balance. These functions of AVT make it susceptible to environmental influence, yet little is understood concerning the variation in the AVT system across habitats. In this study, AVT immunoreactivity was compared between male curve-billed thrashers, Toxostomacurvirostre, from native Sonoran Desert locations and those within the city of Phoenix, Ariz. Previous research found that urban thrashers are more responsive to territorial intrusion, secrete more corticosterone (CORT) during capture stress, and they may also have greater access to water than desert counterparts. Variation in AVT immunoreactivity was also related to levels of plasma CORT and osmolality, and with behavioral responses to a simulated territorial intrusion. Birds from these two habitats showed different AVT immunoreactive patterns in two brain regions: the paraventricular nucleus of the hypothalamus and the medial bed nucleus of the stria terminalis (BSTM), a part of the limbic system. Immunoreactive AVT within the paraventricular nucleus was associated with plasma CORT levels in urban, but not desert, birds, but no such association with osmolality was observed in birds from either habitat. The total number of BSTM AVT-immunoreactive cells was related to a decreased responsiveness to territorial intrusion. These data suggest that divergence in the AVT system between urban and desert thrashers may help explain observed differences in both the adrenocortical stress response and territorial behavior between populations. Whether differences in water availability between habitats contribute to population differences in the brain AVT system is unknown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call