Abstract

Overactivity of the brain renin-angiotensin system is a major contributor to neurogenic hypertension. Although overexpression of angiotensin-converting enzyme type 2 (ACE2) has been shown to be beneficial in reducing hypertension by transforming angiotensin II into angiotensin-(1-7), several groups have reported decreased brain ACE2 expression and activity during the development of hypertension. We hypothesized that ADAM17-mediated ACE2 shedding results in decreased membrane-bound ACE2 in the brain, thus promoting the development of neurogenic hypertension. To test this hypothesis, we used the deoxycorticosterone acetate-salt model of neurogenic hypertension in nontransgenic and syn-hACE2 mice overexpressing ACE2 in neurons. Deoxycorticosterone acetate-salt treatment in nontransgenic mice led to significant increases in blood pressure, hypothalamic angiotensin II levels, inflammation, impaired baroreflex sensitivity, and autonomic dysfunction, as well as decreased hypothalamic ACE2 activity and expression, although these changes were blunted or prevented in syn-hACE2 mice. In addition, reduction of ACE2 expression and activity in the brain paralleled an increase in ACE2 activity in the cerebrospinal fluid of nontransgenic mice after deoxycorticosterone acetate-salt treatment and were accompanied by enhanced ADAM17 expression and activity in the hypothalamus. Chronic knockdown of ADAM17 in the brain blunted the development of hypertension and restored ACE2 activity and baroreflex function. Our data provide the first evidence that ADAM17-mediated shedding impairs brain ACE2 compensatory activity, thus contributing to the development of neurogenic hypertension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.