Abstract

ObjectivesPeripheral benzodiazepine receptors (PBRs) are upregulated on activated microglia and are thereby biomarkers of neuroinflammation. We developed a PET ligand with an aryloxyanilide structure, [O-methyl-11C]N-acetyl-N-(2-methoxybenzyl)-2-phenoxy-5-pyridinamine ([11C]PBR28), to image PBRs. The objectives of the current study were to evaluate kinetics of brain uptake, and the influence of the peripheral binding on the arterial input function in rhesus monkey. MethodsBrain (baseline: n=6, blocking: n=1) and whole-body PET imaging (baseline: n=3, blocking: n=1) of [11C]PBR28 were performed with the measurement of radiometabolite-corrected arterial input function in all brain and two whole body scans. ResultsSaturating doses of nonradioactive PBR ligands markedly increased [11C]PBR28 in plasma (∼400% increase) and brain (∼200%) at 2 min by displacing radioligand from PBRs in peripheral organs. Brain uptake of radioactivity peaked in baseline scans at ∼40 min after injection of [11C]PBR28 and was high (∼300% standardized uptake value). The images showed no receptor-free region that could be used for reference tissue analysis. Thus, quantitation of receptor density required measurement of parent radioligand in arterial plasma. Nondisplaceable uptake was estimated from the blocked scans and was only ∼5% of total distribution volume measured under baseline conditions. Distribution volume of [11C]PBR28 was stably determined within 110 min of scanning. ConclusionsRegional brain uptake of [11C]PBR28 in monkey could be quantified as a value proportional to the density of receptors—namely, as equilibrium distribution volume. [11C]PBR28 had high levels of specific binding in brain and should provide a sensitive measure of changes in PBRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.