Abstract

Duchenne muscular dystrophy (DMD) is an X-linked muscle disorder characterized by progressive and irreversible loss of muscular function. As muscular disease progresses, the repair mechanisms cannot compensate for cellular damage, leading inevitably to necrosis and progressive replacement by fibrous and fatty tissue. Cardiomyopathy and respiratory failure are the main causes of death in DMD. In addition to the well-described muscle and heart disease, cognitive dysfunction affects around 30% of DMD boys. Myocardial fibrosis, assessed by late gadolinium enhancement (LGE), using cardiovascular magnetic resonance imaging (CMR), is an early marker of heart involvement in both DMD patients and female carriers. In parallel, brain MRI identifies smaller total brain volume, smaller grey matter volume, lower white matter fractional anisotropy and higher white matter radial diffusivity in DMD patients. The in vivo brain evaluation of mdx mice, a surrogate animal model of DMD, showed an increased inorganic phosphate (P(i))/phosphocreatine (PCr) and pH. In this paper, we propose a holistic approach using techniques of magnetic resonance imaging, spectroscopy and diffusion tensor imaging as a tool to create a "heart and brain imaging map" in DMD patients that could potentially facilitate the patients' risk stratification and also future research studies in the field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.