Abstract
Walker-Warburg syndrome (WWS) is a severe congenital disease that is characterized by brain and eye malformations and lethality during the first year of life. Genetic mutations have been identified in a subset of WWS patients, but a majority of clinical cases have unknown etiologies. POMT1 and POMT2, two of the causative genes, form an active enzyme complex in the posttranslational biosynthetic pathway of dystroglycan. Deletion of either Pomt1 or the dystroglycan gene causes early embryonic lethality in mice. Here we report that mice with epiblast-specific loss of dystroglycan develop brain and eye defects that broadly resemble the clinical spectrum of the human disease, including aberrant neuron migration, hydrocephalus, and malformations of the anterior and posterior chambers of the eye. Breaches of basement membranes coincide with the pathology, revealing an important function for dystroglycan in the morphogenesis of the brain and eye. These findings demonstrate the central role of dystroglycan in WWS and suggest that novel defects in posttranslational processing or mutations of the dystroglycan gene itself may underlie cases in which no causative mutation has been found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.