Abstract

The aim of this study was to test whether or not concurrent evaluations of brain (electroencephalography [EEG]) and cardiorespiratory responses to exercise are influenced by environmental conditions. 10 adult male participants performed a standardized incremental exercise test to exhaustion on a cycle ergometer in an environment controlled laboratory on 2 separate occasions, in a randomized order; one in a hot condition (34.5°C) and one in a thermoneutral condition (20°C). EEG, heart rate and expired air were collected throughout. EEG data were decontaminated for artefacts, log-transformed and expressed as aggregated alpha and beta power responses across electrodes reflecting the frontal cortex of the brain. Performance outcomes showed there was no difference in V˙O2 peak across hot (42.5 ml/kg/min) and neutral (42.8 ml/kg/min) conditions, although ventilatory threshold (VT) occurred at a lower threshold (68%) in hot compared to neutral condition (74%) (p<0.05). EEG alpha and beta wave responses both demonstrated significant increases from baseline to VT (p<0.01). EEG beta-band activity was significantly elevated in the heat compared to the neutral condition. In conclusion, elevated EEG beta-band activity in response to incremental exercise in the heat suggests that beta-band activation and cortical awareness increases as exercise becomes increasingly intense.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.