Abstract

Alterations in the brain's connectivity or the interactions among brain regions have been studied with the aid of resting state (rs)fMRI data attained from large numbers of healthy subjects of various demographics. This has been instrumental in providing insight into how a phenotype as fundamental as age affects the brain. Although machine learning (ML) techniques have already been deployed in such studies, novel questions are investigated in this work. We study whether young brains develop properties that progressively resemble those of aged brains, and if the aging dynamics of older brains provide information about the aging trajectory in young subjects. The degree of a prospective monotonic relationship will be quantified, and hypotheses of brain aging trajectories will be tested via ML. Furthermore, the degree of functional connectivity across the age spectrum of three datasets will be compared at a population level and across sexes. The findings scrutinize similarities and differences among the male and female subjects at greater detail than previously performed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.