Abstract

Self-regulation of brain activation with real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) is emerging as a promising treatment for psychiatric disorders. The association between the regulation and symptom reduction, however, has not been consistent, and the mechanisms underlying the symptom reduction remain poorly understood. The present study investigated brain activity mediators of the amygdala rtfMRI-nf training effect on combat veterans' PTSD symptom reduction. The training was designed to increase a neurofeedback signal either from the left amygdala (experimental group; EG) or from a control region not implicated in emotion regulation (control group; CG) during positive autobiographical memory recall. We employed a structural equation model mapping analysis to identify brain regions that mediated the effects of the rtfMRI-nf training on PTSD symptoms. Symptom reduction was mediated by low activation in the dorsomedial prefrontal cortex (DMPFC) and the middle cingulate cortex. There was a trend toward less activation in these regions for the EG compared to the CG. Low activation in the precuneus, the right superior parietal, the right insula, and the right cerebellum also mediated symptom reduction while their effects were moderated by the neurofeedback signal; a higher signal was linked to less effect on symptom reduction. This moderation was not specific to the EG. MDD comorbidity was associated with high DMPFC activation, which resulted in less effective regulation of the feedback signal. These results indicated that symptom reduction due to the neurofeedback training was not specifically mediated by the neurofeedback target activity, but broad regions were involved in the process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call