Abstract

Mechanical performance of a surgical robot can be evaluated and improved based on a working score; however, intuitive operability cannot be evaluated in this way. We propose a method that measures the user's brain activity for evaluating intuitive operability from the perspective of cognitive science. We hypothesized that hand-eye coordination, such as the slave configuration for the endoscope, has the greatest effect on intuitive operability, because it is the cause of physical differences between a human and a robot. The objective of this paper is to clarify the appropriate slave configuration for the endoscope to study hand-eye coordination using brain activity measurements. In the experiment, we used a brain imaging device, optical topography, to measure the users' brain activity while they controlled the hand-controller to position the tip of the virtual arm on the target. The experiment was carried out a number of times with the virtual arm position configured in a variety of ways. According to the results, some subjects showed peak performance with a specific slave configuration. We conclude that the slave configuration with the highest brain activity depends on the body image, which is a spatial symbol in the human brain from the perspective of cognitive science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.