Abstract
The prefrontal cortex (PFC) plays an important role in cognitive function, involved in Executive Functions (EFs) such as planning, working memory, and inhibition. Activation in the PFC also occurs during some motor activities. One commonly used tool to assess EF is the Tower of Hanoi, demonstrating sensitivity to PFC dysfunction. However, limited neuroimaging evidence is available to support the contribution of the PFC in the Tower of Hanoi task. In the current study, we use functional near infrared (fNIR) spectroscopy to examine hemodynamic responses associated with neural activity in the PFC in adults as they participate in the Tower of Hanoi task. We compared changes in cerebral oxygenation during resting, a motor task (tapping), and the Tower of Hanoi in 16 neurotypical adults, with measures of relative changes in concentration of oxygenated hemoglobin (Δoxy-Hb) and deoxygenated hemoglobin (Δdeoxy-Hb) taken throughout tasks, as well as total hemoglobin (ΔHbT) and oxygenation (Δoxy). Performance on the Tower of Hanoi was measured by the number of moves used to complete each level and the highest level of successful performance (3, 4, or 5 disks). We found a significant higher value of Δoxy-Hb and Δoxy in dorsolateral PFC (DLPFC) during the Tower of Hanoi as compared to tapping and resting. Significant changes in Δdeoxy-Hb and ΔHbT during the Tower of Hanoi were found in the right DLPFC only. These results support the notion that the Tower of Hanoi task requires higher levels of PFC activity than a similar motor task with low executive function demands.
Highlights
The prefrontal cortex (PFC), often described as the center of cognitive function, is involved in Executive Functions (EFs) that include cognitive processes such as problem solving, decision making, working memory, planning, inhibition of responses, and cognitive flexibility
We use functional near infrared spectroscopy to examine hemodynamic responses associated with neural activity in the PFC in adults as they participate in the Tower of Hanoi task
These changes along with a significant decrease in Δdeoxy-Hb from eyes open resting to the Tower of Hanoi condition indicated that there was a higher activation in RDLPFC when participants were performing the Tower of Hanoi task
Summary
The prefrontal cortex (PFC), often described as the center of cognitive function, is involved in Executive Functions (EFs) that include cognitive processes such as problem solving, decision making, working memory, planning, inhibition of responses, and cognitive flexibility. The activation in the PFC has been linked to motor timing, movement selection, and control of gait [1] [2] [3]. Motor timing involves determining the appropriate time for movement initiation [1]. Movement selection helps to suppress automatically triggered responses and prepare for a proper reaction to a task [3]. Examining the activity in the PFC can help us to better understand its role in the neural basis of motor control and this knowledge can be applied to populations with motor dysfunctions. Task-induced activity in the PFC was measured during a simple motor task and an EF task to examine the role of the PFC in each task
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.