Abstract

Brain activation detection is an important problem in fMRI data analysis. In this paper, we propose a data-driven activation detection method called neighborhood one-class SVM (NOC-SVM). Based on the probability distribution assumption of the one-class SVM algorithm and the neighborhood consistency hypothesis, NOC-SVM identifies a voxel as either an activated or non-activated voxel by a weighted distance between its near neighbors and a hyperplane in a high-dimensional kernel space. The proposed NOC-SVM are evaluated by using both synthetic and real datasets. On two synthetic datasets with different SNRs, NOC-SVM performs better than K-means and fuzzy K-means clustering and is comparable to POM. On a real fMRI dataset, NOC-SVM can discover activated regions similar to K-means and fuzzy K-means. These results show that the proposed algorithm is an effective activation detection method for fMRI data analysis. Furthermore, it is stabler than K-means and fuzzy K-means clustering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.