Abstract

A remarkable property of quantum mechanics in two-dimensional (2D) space is its ability to support "anyons," particles that are neither fermions nor bosons. Theory predicts that these exotic excitations can be realized as bound states confined near topological defects, like Majorana zero modes trapped in vortices in topological superconductors. Intriguingly, in the simplest cases the nontrivial phase that arises when such defects are "braided" around one another is not intrinsically quantum mechanical; rather, it can be viewed as a manifestation of the geometric (Pancharatnam-Berry) phase in wave mechanics, enabling the simulation of such phenomena in classical systems. Here we report the first experimental measurement in any system, quantum or classical, of the geometric phase due to such a braiding process. These measurements are obtained using an interferometer constructed from highly tunable 2D arrays of photonic waveguides. Our results introduce photonic lattices as a versatile playground for the experimental study of topological defects and their braiding, complementing ongoing efforts in solid-state systems and cold atomic gases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call