Abstract

Composites reinforced with braided textiles exhibit high structural stability and excellent damage tolerance, making them ideal materials for use in sports-protection equipment. In sports impact scenarios, braided composites need to maintain their structure integrity and dissipate impact energy to protect a human body. Thus, it is crucial to study the dynamic response of a composite structure and its energy-dissipation mechanisms. Here, a multi-scale computational approach was explored to capture main damage modes of a braided textile composite; simulations were supported by experimental verification. A drop-weight test was performed with a spike-shape impactor to imitate real-life sports impact collision scenarios, followed by X-ray computed micro-tomography to characterize damage morphology of the specimen. The experimental results were compared with analytical models. The extent of delamination was quantified by applying surface- and element-based cohesive zone models. A ply-level model with three-dimensional continuum and shell elements was employed to explore the effect of through-thickness failure modes on energy absorption of the composite. The propagation mechanism of matrix cracks is also discussed. In addition, with the developed model, impact-attenuation performance of a shin-guard structure was simulated. The presented modelling capability can improve design of braided composite structures for sports and other protective and structural applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.