Abstract

We study groups of bi-Galois objects over a Hopf algebra H in a braided monoidal category B . We assume H to be cocommutative in a certain sense; this does not mean that H is a cocommutative coalgebra with respect to the braiding given in B , but it is cocommutative with respect to a different braiding subject to specific axioms. The type of cocommutative Hopf algebras under consideration (investigated in previous papers) occurs naturally, for example in Majid's transmutation construction. We show that for cocommutative H the suitably defined cocommutative bi-Galois objects form a subgroup in the group of H- H-bi-Galois objects. We also show that all cocycles on H are lazy, and that second (lazy) cohomology describes the subgroup of cleft bi-Galois extensions in the group of cocommutative ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.