Abstract

For an unoriented link [Formula: see text], let [Formula: see text] be the ropelength of [Formula: see text]. It is known that in general [Formula: see text] is at least of the order [Formula: see text], and at most of the order [Formula: see text] where [Formula: see text] is the minimum crossing number of [Formula: see text]. Furthermore, it is known that there exist families of (infinitely many) links with the property [Formula: see text]. A long standing open conjecture states that if [Formula: see text] is alternating, then [Formula: see text] is at least of the order [Formula: see text]. In this paper, we show that the braid index of a link also gives a lower bound of its ropelength. More specifically, we show that there exists a constant [Formula: see text] such that [Formula: see text] for any [Formula: see text], where [Formula: see text] is the largest braid index among all braid indices corresponding to all possible orientation assignments of the components of [Formula: see text] (called the maximum braid index of [Formula: see text]). Consequently, [Formula: see text] for any link [Formula: see text] whose maximum braid index is proportional to its crossing number. In the case of alternating links, the maximum braid indices for many of them are proportional to their crossing numbers hence the above conjecture holds for these alternating links.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call