Abstract

In this survey paper we present the $L$--moves between braids and how they can adapt and serve for establishing and proving braid equivalence theorems for various diagrammatic settings, such as for classical knots, for knots in knot complements, in c.c.o. 3--manifolds and in handlebodies, as well as for virtual knots, for flat virtuals, for welded knots and for singular knots. The $L$--moves are local and they provide a uniform ground for formulating and proving braid equivalence theorems for any diagrammatic setting where the notion of braid and diagrammatic isotopy is defined, the statements being first geometric and then algebraic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.