Abstract

In order to investigate the mechanism of cisplatin resistance, a cisplatin-resistant human gastric cancer cell line was established. Subsequent to the exposure of the YCC-3 gastric cancer cell line to equal concentrations of cis-diammine-dichloroplatinum (II) (cisplatin, CDDP) for 6 months, a cisplatin-resistant cell line was established (YCC-3/R). To determine the molecular mechanism of cisplatin resistance in YCC-3/R cells, differentially expressed genes (DEGs) were investigated between YCC-3 and YCC-3/R by annealing control primer-based reverse transcriptase-polymerase chain reaction (ACP RT-PCR) technology. Eleven DEGs were successfully identified and sequenced. Among them, interferon-induced transmembrane protein 1 (9-27) and interferon α-inducible protein 27 (IFI-27) were markedly increased in YCC-3/R cells. In addition, western blot analysis demonstrated that the Brahma-related gene 1 (BRG1), which was observed to selectively activate 9-27 and IFI-27 genes, was overexpressed in YCC-3/R cells. The results suggested that the BRG1‑associated expression of 9-27 and IFI-27 is involved in cisplatin resistance in gastric cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call