Abstract
Strain engineering is a promising technology with potential application in memory devices, electronic elements, photoactive materials, etc. Nanoscale imaging of the strain is therefore important to better understand the operating condition of the device, growth processes, and influences of other factors. X-rays offer the advantage over electron-based techniques in that they offer high spatial resolution and access to volumetric information within nanostructured materials. This paper describes the basic physics behind strain at the nanoscale and provides a concise summary of the efforts in coherent diffractive imaging for the imaging of the displacement fields in nanocrystals. Although the approach is still under development, with instruments being continuously improved, a number of important results have already been demonstrated.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.