Abstract

Several causes may lead to CRC, either extrinsic (sporadic forms) or genetic (hereditary forms), such as Lynch syndrome (LS). Most sporadic deficient mismatch repair (dMMR) CRC cases are characterized by the methylation of the MLH1 promoter gene and/or BRAF gene mutations. Usually, the first test performed is the mismatch repair deficiency analysis. If a tumor shows a dMMR, BRAF mutations and then the MLH1 promoter methylation status have to be assessed, according to the ACG/ASCO screening algorithm. In this study, 100 consecutive formalin-fixed and paraffin-embedded samples of dMMR CRC were analyzed for both BRAF mutations and MLH1 promoter methylation. A total of 47 (47%) samples were BRAF p.V600E mutated, while MLH1 promoter methylation was found in 77 cases (77.0%). The pipeline “BRAF-followed-by-MLH1-analysis” led to a total of 153 tests, while the sequence “MLH1-followed-by-BRAF-analysis” resulted in a total of 123 tests. This study highlights the importance of performing MLH1 analysis in LS screening of BRAF-WT specimens before addressing patients to genetic counseling. We show that MLH1 analysis performs better as a first-line test in the screening of patients with LS risk than first-line BRAF analysis. Our data indicate that analyzing MLH1 methylation as a first-line test is more cost-effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.