Abstract

Bacterial strains isolated from nitrogen-fixing nodules of Lupinus mariae-josephae have been characterized following genetic, phenotypic and symbiotic approaches. Analysis of 16S rRNA genes placed them in a group together with Bradyrhizobium elkanii USDA 76T, B. pachyrhizi PAC48T, B. jicamae PAC68T, ‘B. retamae’ Ro19T and B. lablabi CCBAU 23086T with over 99.0% identity. Phylogenetic analysis of concatenated housekeeping genes, recA, atpD and glnII, suggested that L. mariae-josephae strains represent a new Bradyrhizobium species, closely related to B. lablabi CCBAU 23086T, B. jicamae PAC68T and ‘B. retamae’ Ro19T with 92.1, 91.9 and 90.8% identity, respectively. These results are consistent with overall genomic identities calculated as Average Nucleotide Identity (ANIm) using draft genomic sequences obtained for relevant strains. While L. mariae-josephae strains LmjM3T/LmjM6 exhibited a 99.2% ANIm value, they were significantly distant (<93% ANIm) from type strains of their closest species (‘B. retamae’ Ro19T, B. lablabi CCBAU 23086T and B. jicamae PAC68T). Whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (WC-MALDI-TOF-MS) analysis of proteomic patterns of the same strains was consistent with these results. The symbiosis-related genes nodC, nodA and nifH genes from strains nodulating L. mariae-josephae were phylogenetically related to those from ‘B. retamae’ Ro19T, but divergent from those of strains that nodulate other lupine species. Based on genetic, genomic, proteomic and phenotypic data presented in this study, L. mariae-josephae nodulating strains LmjM3T, LmjM6 and LmjM2 should be grouped within a new species for which the name Bradyrhizobium valentinum sp. nov. is proposed (type strain LmjM3T=CECT 8364T, LMG 2761T)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call