Abstract

We have used an established cell line of rabbit cortical collecting duct (RCCD) epithelial cells representing a mixed population of principal and intercalated cell types to determine which phospholipase A2 (PLA2) enzyme therein is responsible for bradykinin (BK)-stimulated arachidonic acid (AA) release and how its activation is regulated. BK-stimulated AA release was reduced 92% by arachidonyl trifluoromethyl ketone, an inhibitor of cytosolic PLA2 (cPLA2). Examination of PLA2 activity in vitro demonstrated that BK stimulation resulted in a greater than twofold increase in PLA2 activity and that this activity was dithiothreitol insensitive and was inhibited by an antibody directed against cPLA2. To determine a possible role for protein kinase C (PKC) in the BK-mediated activation of cPLA2, we used the PKC-specific inhibitor Ro31-8220 and examined its effects on AA release, cPLA2 activity, and phosphorylation. Ro31-8220 reduced BK-stimulated AA release and cPLA2 activity by 51 and 58%, respectively. cPLA2 activity stimulated by phorbol ester [phorbol 12-myristate 13-acetate (PMA)] displayed a similar degree of activation and was associated with an increase in serine phosphorylation identical to that caused by BK. The phosphorylation-induced activation of this enzyme was confirmed by the phosphatase-mediated reversal of both BK- and PMA-stimulated cPLA2 activity. In addition, we have also found that PMA stimulation did not cause a synergistic potentiation of BK-stimulated AA release as did calcium ionophore. This occurred despite membrane PKC activity increasing 93% in response to PMA vs. 42% in response to BK. These data, taken together, indicate that cPLA2 is the enzyme responsible for BK-mediated AA release, and, moreover, they indicate that PKC is involved in the onset responses of cPLA2 to BK.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call