Abstract

Recent reports suggest that inflammatory cytokines, growth factors, and vasoconstrictor peptides induce sphingomyelinase (SMase) activity. This results in the hydrolysis of sphingomyelin (SM) into ceramide, which is implicated in various cellular functions. Although ceramide regulates phospholipase D (PLD) activity, there is controversy about this relationship. Thus we investigated whether the effect of bradykinin (BK), a proinflammatory factor and vasodilator, was mediated by ceramide signal transduction and by PLD. In rabbit cortical collecting duct (RCCD) cells, BK increased SM levels and decreased ceramide levels in a time-dependent manner. Thus SMase activity was inhibited by BK. Also, the production of ceramide was regulated in a concentration-dependent manner. The BK-B1 antagonist [Lys-des-Arg9,Leu8]BK did not affect ceramide signal transduction but the BK-B2 antagonist (Hoe-140) blocked the effect of BK on SMase, suggesting that the BK-B2 receptor mediates BK-induced inhibition of ceramide generation. Our results show that exogenous SMase significantly hydrolyzed endogenous SM to form ceramide and weakly activated PLD. In contrast, BK induced a significant activation of PLD. However, additive effects of BK and ceramide on PLD activity were not observed. We concluded that in RCCD cells, the BK-induced second messengers ceramide and phosphatidic acid were generated by distinct signal transduction mechanisms, namely the SMase and PLD pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call