Abstract

Various disk and outflow components such as the magnetosphere, the disk wind, the gaseous accretion disk, and other regions may contribute to the hydrogen line emission of young Herbig AeBe stars. Non-LTE modeling was performed to show the influence of the model parameters of each emitting region on the intensity and shape of the Br γ line profile, to present the spatial brightness distribution of each component, and to compare the contribution of each component to the total line emission. The modeling shows that the disk wind is the dominant contributor to the Br γ line rather than the magnetosphere and inner gaseous accretion disk. The contribution of the disk wind region to the H α line is also considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.