Abstract
Detecting chromosome structural abnormalities in medical genetics is essential for diagnosing genetic disorders and understanding their implications for an individual’s health. However, existing computational methods are formulated as a binary-class classification problem trained only on representations of positive/negative chromosome pairs. This paper introduces an innovative framework for detecting chromosome abnormalities with banding resolution, capable of precisely identifying and masking the specific abnormal regions. We highlight a pixel-level abnormal mapping strategy guided by banding features. This approach integrates data from both the original image and banding characteristics, enhancing the interpretability of prediction results for cytogeneticists. Furthermore, we have implemented an ensemble approach that pairs a discriminator with a conditional random field heatmap generator. This combination significantly reduces the false positive rate in abnormality screening. We benchmarked our proposed framework with state-of-the-art (SOTA) methods in abnormal screening and structural abnormal region segmentation. Our results show cutting-edge effectiveness and greatly reduce the high false positive rate. It also shows superior performance in sensitivity and segmentation accuracy. Being able to identify abnormal regions consistently shows that our model has demonstrated significant clinical utility with high model interpretability. BRChromNet is open-sourced and available at https://github.com/frankchen121212/BR-ChromNet
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.