Abstract

We investigate the vortex-type BPS equations in the ABJM theory without and with mass-deformation. We systematically classify the BPS equations in terms of the number of supersymmetry and the R-symmetries of the undeformed and mass-deformed ABJM theories. For the undeformed case, we analyze the ${\cal N}=2$ BPS equations for U(2)$\times$U(2) gauge symmetry and obtain a coupled differential equation which can be reduced to either Liouville- or Sinh-Gordon-type vortex equations according to the choice of scalar functions. For the mass-deformed case with U($N$)$\times$U($N$) gauge symmetry, we obtain some number of pairs of coupled differential equations from the ${\cal N}=1,2$ BPS equations, which can be reduced to the vortex equations in Maxwell-Higgs theory or Chern-Simons matter theories as special cases. We discuss the solutions. In ${\cal N}=3$ vortex equations Chern-Simons-type vortex equation is not allowed. We also show that ${\cal N}=\frac52, \frac32, \frac12$ BPS equations are equivalent to those with higher integer supersymmetries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.