Abstract

We present here a careful study of the holographic duals of BPS surface operators in the 6d theory. Several different classes of surface operators have been recently identified and each class has a specific calibration form—a 3-form in whose pullback to the M2-brane world-volume is equal to the volume form. In all but one class, the appropriate forms are exact, so the action of the M2-brane is easily expressed in terms of boundary data, which is the geometry of the surface. Specifically, for surfaces of vanishing anomaly, it is proportional to the integral of the square of the extrinsic curvature. This can be extended to the case of surfaces with anomalies, by taking the ratio of two surfaces with the same anomaly. This gives a slew of new expectation values at large N in this theory. For one specific class of surface operators, which are Lagrangian submanifolds of , the structure is far richer and we find that the M2-branes are special Lagrangian submanifold of an appropriate six-dimensional almost Calabi-Yau submanifold of . This allows for an elegant treatment of many such examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.