Abstract
We consider the Witten-Reshetikhin-Turaev invariants or Chern-Simons partition functions at or around roots of unity q={e}^{frac{2pi i}{K}} with a rational level K = frac{r}{s} where r and s are coprime integers. From the exact expression for the G = SU(2) Witten-Reshetikhin-Turaev invariants of the Seifert manifolds at a rational level obtained by Lawrence and Rozansky, we provide an expected form of the structure of the Witten-Reshetikhin-Turaev invariants in terms of the homological blocks at a rational level. Also, we discuss the asymptotic expansion of knot invariants around roots of unity where we take a limit different from the limit in the standard volume conjecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.