Abstract

We apply the BPS Lagrangian method to derive BPS equations of monopole and dyon in the SU2 Yang-Mills-Higgs model, Nakamula-Shiraishi models, and their generalized versions. We argue that, by identifying the effective fields of scalar field, f, and of time-component gauge field, j, explicitly by j=βf with β being a real constant, the usual BPS equations for dyon can be obtained naturally. We validate this identification by showing that both Euler-Lagrange equations for f and j are identical in the BPS limit. The value of β is bounded to β<1 due to reality condition on the resulting BPS equations. In the Born-Infeld type of actions, namely, Nakamula-Shiraishi models and their generalized versions, we find a new feature that, by adding infinitesimally the energy density up to a constant 4b2, with b being the Born-Infeld parameter, it might turn monopole (dyon) to antimonopole (antidyon) and vice versa. In all generalized versions there are additional constraint equations that relate the scalar-dependent couplings of scalar and of gauge kinetic terms or G and w, respectively. For monopole the constraint equation is G=w-1, while for dyon it is wG-β2w=1-β2 which further gives lower bound to G as such G≥2β1-β2. We also write down the complete square-forms of all effective Lagrangians.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.