Abstract

We study static BPS black hole horizons in four dimensional N=2 gauged supergravity coupled to $n_v$-vector multiplets and with an arbitrary cubic prepotential. We work in a symplectically covariant formalism which allows for both electric and magnetic gauging parameters as well as dyonic background charges and obtain the general solution to the BPS equations for horizons of the form $AdS_2\times \Sigma_g$. In particular this means we solve for the scalar fields as well as the metric of these black holes as a function of the gauging parameters and background charges. When the special Kahler manifold is a symmetric space, our solution is completely explicit and the entropy is related to the familiar quartic invariant. For more general models our solution is implicit up to a set of holomorphic quadratic equations. For particular models which have known embeddings in M-theory, we derive new horizon geometries with dyonic charges and numerically construct black hole solutions. These correspond to M2-branes wrapped on a Riemann surface in a local Calabi-Yau five-fold with internal spin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.