Abstract

The stability of the topological kinks of the nonlinear S{sup 2}-sigma model discovered by Alonso Izquierdo et al. is discussed by means of a direct estimation of the spectra of the second-order fluctuation operators around topological kinks. The one-loop mass shifts caused by quantum fluctuations around these kinks are computed using the Cahill-Comtet-Glauber formula. The (lack of) stability of the nontopological kinks is unveiled by application of the Morse index theorem. These kinks are identified as non-BPS states. There are two types of topological kinks coming from the twofold embedding of the sine-Gordon model in the massive nonlinear sigma model. It is shown that sine-Gordon kinks of only one type satisfy first-order equations and are accordingly BPS classical solutions. Finally, the interplay between instability and supersymmetry is explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.