Abstract

Real-time human intent recognition is important for controlling low-limb wearable robots. In this paper, to achieve continuous and precise recognition results on different terrains, we propose a real-time training and recognition method for six locomotion modes including standing, level ground walking, ramp ascending, ramp descending, stair ascending and stair descending. A locomotion recognition system is designed for the real-time recognition purpose with an embedded BPNN-based algorithm. A wearable powered orthosis integrated with this system and two inertial measurement units is used as the experimental setup to evaluate the performance of the designed method while providing hip assistance. Experiments including on-board training and real-time recognition parts are carried out on three able-bodied subjects. The overall recognition accuracies of six locomotion modes based on subject-dependent models are 98.43% and 98.03% respectively, with the wearable orthosis in two different assistance strategies. The cost time of recognition decision delivered to the orthosis is about 0.9[Formula: see text]ms. Experimental results show an effective and promising performance of the proposed method to realize real-time training and recognition for future control of low-limb wearable robots assisting users on different terrains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call