Abstract

Grid voltage feedforward is extensively used for controlling grid-connected converters. However, the conventional voltage feedforward control reduces the stability margins of the converter connected to a high-impedance grid. The effect mechanism of voltage feedforward on the grid-connected converter control under high-inductive conditions of the grid impedance is clearly explained in this study using the equivalent transformations of control block diagrams. Results show that the delay produced by the digital control is the root cause of this effect. An improved voltage feedforward strategy, in which a bandpass filter (BPF) is introduced into the feedforward path, is proposed to strengthen the converter’s robust stability against grid impedance variations. The selection method of the BPF’s bandwidth is also provided considering the tradeoff between the response speed to the grid voltage sag and the system’s robust stability. The converter can work stably over a wide range of the grid impedance through the proposed approach. Simulation and experimental results fully verify the effectiveness of the BPF-based voltage feedforward strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.