Abstract
Network function virtualization (NFV) brings the potential to provide the flexible implementation of network functions and reduce overall hardware cost by running service function chains (SFCs) on commercial off-the-shelf servers with many-core processors. Towards this direction, both academia and industry have spent vast amounts of effort to address the optimal placement challenges of NFV middleboxes. Most of the servers usually are equipped with Intel X86 processors, which adopt Non-Uniform Memory Access (NUMA) architecture. However, existing solutions for placing SFCs in one server either ignore the impact of hardware architecture or overlook the dependency between middleboxes. Our empirical analysis shows that the placement of virtual network functions (VNFs) with interdependency in a server needs more particular consideration. In this paper, we first manage the optimal placement of VNFs by jointly considering the discrepancy of cores in different NUMA nodes and interdependency between network functions (NFs), and formulate the optimization problem as a Non-Linear Integer Programming (NLIP) model. Then we find a reasonable metric to describe the dependency relation formally. Finally, we propose a heuristic-based backtracking placement algorithm (BPA) to find the near-optimal placement solution. The evaluation shows that, compared with two state-of-art placement strategies, our algorithm can improve the aggregate performance by an average of 20% or 45% within an acceptable time range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.