Abstract

Only scant research has compared children's mean power frequency (MPF) to adults', with a clear overview still lacking. A significant obstacle has been MPF's high variability, which this study aimed to overcome by elucidating the MPF characteristics distinguishing boys from men in progressive exhaustive exercise. Electromyographic (EMG) data of 20 men (23.5 ± 2.5yrs) and 17 boys (10.2 ± 1.0 yrs), who performed progressively exhausting, intermittent isometric knee extensions, were subjected to secondary MPF analysis. Participants' vastus lateralis MPF data series were transformed to third-order polynomial regressions and expressed as percentages of the peak polynomial MPF values (%MPFpeak). The resulting curves were compared at 5-% time-to-exhaustion (TTE) intervals, using repeated-measures ANOVA. Raw MPFpeak values were adiposity corrected to 0% fat and used to convert the %MPFpeak data back to absolute MPF values (Hz) for estimating muscle-level MPF. No overall interaction or group effects could be shown between the %MPFpeak plots, but pairwise comparisons revealed significantly higher men's values at 50-70%TTE and lower at 100%TTE, i.e. boys' shallower MPF rise and decline. The adiposity-corrected boys' and men's composite MPF values peaked at 125.7 ± 2.5 and 166.0 ± 2.4 Hz, respectively (110.7 ± 1.7 and 122.5 ± 2.1 Hz, uncorrected), with a significant group effect (p < 0.05) and pairwise differences at all %TTE points. The boys were lower than the men in both the observed and, more so, in the adiposity-corrected MPF values that presumably estimate muscle-level MPF. The boys' shallower MPF rise and decline conform to children's claimed type-II motor-unit activation and/or compositional deficits and their related known advantage in muscular endurance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call