Abstract
Box graphs, or equivalently Coulomb phases of three-dimensional N=2 supersymmetric gauge theories with matter, give a succinct, comprehensive and elegant characterization of crepant resolutions of singular elliptically fibered varieties. Furthermore, the box graphs predict that the phases are organized in terms of a network of flop transitions. The geometric construction of the resolutions associated to the phases is, however, a difficult problem. Here, we identify a correspondence between box graphs for the gauge algebras su(2k+1) with resolutions obtained using toric tops and generalizations thereof. Moreover, flop transitions between different such resolutions agree with those predicted by the box graphs. Our results thereby provide explicit realizations of the box graph resolutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Nuclear Physics B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.