Abstract
Curvature scale-space (CSS) analysis is an important technique for contour-based object recognition in digital images. To compute the CSS for a given contour, it is systematically convolved (smoothed) with Gaussians with increasing standard deviation. The convolutions are computationally expensive, especially for large and high resolution contours, but can be approximated using box filtering (also known as mean and average filtering). Together with running sums, the convolutions can be accelerated by 2–3 magnitudes without significant loss of precision. Nonetheless, box filtering has not been systematically investigated in connection with CSS computation. In this work, we present a theoretical and experimental analysis of different box-filtering techniques in this context and conclude which is the most efficient implementation. Based on this, the CSS of a contour can be computed in real time with high precision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.