Abstract

Sub-10-nm gaps in noble metal bowtie structures may enable strong enhancement of the near field at the gap. However, it is challenging to define such small gaps using electron beam lithography (EBL) due to the proximity effect. Here, we circumvented this problem by carrying out EBL on a thin membrane that is transparent to incident electrons and thus free from the proximity effect. Nanogaps down to 6 nm were obtained and employed for sensing application based on surface-enhanced Raman scattering (SERS). We achieved a high sensitivity at low concentration of the target molecule with a SERS enhancement factor of 107.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.