Abstract

Low-temperature waste heat in the infrared (IR) wavelength region offers an opportunity to harvest power from waste energy and requires further investigation in order to find efficient conversion techniques. Although grating-coupled metal-oxide-semiconductor (MOS) diode devices offer efficient conversion from low and moderate-temperature thermal sources, the integration of such diodes with a nanoantenna structure has yet to be explored. We propose a bowtie nanoantenna coupled with a p-doped MOS diode for IR to direct current (DC) conversion without any bias voltage at 28.3 THz. The nanoantenna was designed and optimized to provide maximum field enhancement in a 4 nm-thick oxide layer at the resonant frequency. The device was fabricated following the complementary MOS (CMOS) fabrication process and measured in a custom DC and optical characterization setup using a 10.6 μm wavelength CO2 laser. The results reveal two different types of devices with linear and nonlinear I-V curves having kΩ and MΩ zero-bias resistance, respectively. The linear device generates a micron-level open-circuit voltage (Voc) with clear polarization dependence from the laser input, but the nonlinear case suffers from a weak noise-like signal. Finally, we analyze two types of devices using thermoelectric and tunneling effects and discuss the future direction of nanoantenna-integrated MOS devices for efficient IR harvesters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.