Abstract

Contacting silicon solar cells through in-line high-rate evaporation of aluminum leads to thermomechanical stresses and, thus, to bowing of the solar cells. Understanding the formation of the cell bow is essential for improving the deposition process. We deposit 2 μm-thick aluminum layers onto 230 μm-thick planar p-type silicon wafers of edge lengths of 100, 125, and 156-mm and measure the wafer bow after the deposition. The bow is proportional to b2d/W2, where d is the aluminum layer thickness, W the wafer thickness, and b the wafer edge length. We measure a lower bow than expected by the linear elastic stress theory and show this to be caused by plastic deformation in the Al layer. Due to plastic deformation, only the first 70 K of temperature change actually causes a bow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.