Abstract

SummaryChemical oocyte enucleation holds the potential to ease somatic cell nuclear transfer (SCNT), although high enucleation rates remain limited to micromanipulation-based approaches. Therefore, this study aimed to test mitomycin C (MMC) for use in bovine functional chemical oocyte enucleation. Incubation of denuded eggs in 10 µg ml-1 MMC for different periods did not affect most maturation rates (0.5 h: 85.78%A, 1.0 h: 72.77%B, 1.5 h: 83.87%A, and 2.0 h: 82.05%A) in comparison with non-treated controls (CTL; 85.77%A). Parthenogenetic development arrest by MMC was efficient at cleavage (CTL: 72.93%A, 0.5 h: 64.92%A,B, 1.0 h: 60.39%B,C, 1.5 h: 66.35%A,B, and 2.0 h: 53.84%C) and blastocyst stages (CTL: 33.94%A, 0.5 h: 7.58%B, 1.0 h: 2.47%C, 1.5 h: 0.46%C, and 2.0 h: 0.51%C). Blastocysts were obtained after nuclear transfer (NT) using MMC enucleation [NT(MMC): 4.54%B] but at lower rates than for the SCNT control [NT(CTL): 26.31%A]. The removal of the meiotic spindle after MMC incubation fully restored SCNT blastocyst development [NT(MMC+SR): 24.74%A]. Early pregnancies were obtained by the transfer of NT(MMC) and NT(MMC+SR) blastocysts to synchronized recipients. In conclusion, MMC leads to functional chemical oocyte enucleation during SCNT and further suggests its potential for application towards technical improvements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.