Abstract
We apply a coarse-grained self-consistent field Poisson-Boltzmann framework to study interaction between Bovine Serum Albumin (BSA) and a planar polyelectropyte brush. Both cases of negatively (polyanionic) and positively (polycationic) charged brushes are considered. Our theoretical model accounts for (1) re-ionization free energy of the amino acid residues upon protein insertion into the brush; (2) osmotic force repelling the protein globule from the brush; (3) hydrophobic interactions between non-polar areas on the globule surface and the brush-forming chains. We demonstrate that calculated position-dependent insertion free energy exhibits different patterns, corresponding to either thermodynamically favourable BSA absorption in the brush or thermodynamically or kinetically hindered absorption (expulsion) depending on the pH and ionic strength of the solution. The theory predicts that due to the re-ionization of BSA within the brush, a polyanionic brush can efficiently absorb BSA over a wider pH range on the "wrong side" of the isoelectric point (IEP) compared to a polycationic brush. The results of our theoretical analysis correlate with available experimental data and thus validate the developed model for prediction of the interaction patterns for various globular proteins with polyelectrolyte brushes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.