Abstract

Amplification of reactive oxygen species (ROS) generation through covalent conjugation of bovine serum albumin (BSA) with newly synthesized, ROS-producing carbon dots (CDs) upon visible light irradiation is reported for the first time. Derivatization of surface carboxyl functional groups of Anthrarufin-derived, green-emitting CD with the amine functionality of BSA ushers distinct changes in the photophysics of CD including an unprecedented ∼50 nm shift in its excitation maxima, decrease in fluorescence lifetime, and concomitant increase in ROS generation. Substantial conformational changes of BSA were witnessed upon conjugation with CD, rendering the BSA-CD conjugate resistant to pepsinolysis. A protease-proof nanoassembly was derived from the BSA-CD conjugate through desolvation that simultaneously hosts a prototype antibiotic and generates ROS with excellent efficiency, making it an attractive platform for antibacterial photodynamic therapy (A-PDT) applications. Systemic annihilation of both Gram-positive and -negative bacteria was achieved with the BSA-CD nanoassembly and envisioned as alternatives to traditional photosensitizers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.