Abstract

The bovine papillomavirus E5 protein is a 44-aa transmembrane protein that forms a stable complex with the cellular platelet-derived growth factor (PDGF) beta receptor and induces constitutive tyrosine phosphorylation and activation of the receptor, resulting in cell transformation. The E5 protein does not resemble PDGF, but rather activates the receptor in a ligand-independent fashion, thus providing a unique system to examine activation of receptor tyrosine kinases. Here, we used a variety of approaches to explore the mechanism of receptor activation by the E5 protein. Chemical cross-linking experiments revealed that the E5 protein activated only a small fraction of the endogenous PDGF beta receptor in transformed fibroblasts and suggested that this fraction was constitutively dimerized. Coimmunoprecipitation experiments using extracts of cells engineered to coexpress full-length and truncated PDGF beta receptors confirmed that the E5 protein induced oligomerization of the receptor. Furthermore, in cells expressing the E5 protein, a kinase-active receptor was able to trans-phosphorylate a kinase-negative mutant receptor but was unable to catalyze intramolecular autophosphorylation. These results indicated that the E5 protein induced PDGF beta receptor activation by forming a stable complex with the receptor, resulting in receptor dimerization and trans-phosphorylation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call