Abstract
Pest management is challenged with resistant herbivores and problems regarding human health and environmental issues. Indeed, the greatest challenge to modern agriculture is to protect crops from pests and still maintain environmental quality. This study aimed to analyze by in silico, in vitro, and in vivo approaches to the feasibility of using the inhibitory protein extracted from mammals – Bovine Pancreatic Trypsin Inhibitor (BPTI) as a potential inhibitor of digestive trypsins from the pest Anticarsia gemmatalis and comparing the results with the host-plant inhibitor – Soybean Kunitz Trypsin Inhibitor (SKTI). BPTI and SKTI interacts with A. gemmatalis trypsin-like enzyme competitively, through hydrogen and hydrophobic bonds. A. gemmatalis larvae exposed to BPTI did not show two common adaptative mechanisms i.e., proteolytic degradation and overproduction of proteases, presenting highly reduced trypsin-like activity. On the other hand, SKTI-fed larvae did not show reduced trypsin-like activity, presenting overproduction of proteases and SKTI digestion. In addition, the larval survival was reduced by BPTI similarly to SKTI, and additionally caused a decrease in pupal weight. The non-plant protease inhibitor BPTI presents intriguing element to compose biopesticide formulations to help decrease the use of conventional refractory pesticides into integrated pest management programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.