Abstract
We previously reported that exogenous histone H1, when injected into mitotic cells, disrupts the synchronous progression of mitotic events by delaying chromosome decondensation. This strategy was utilized to determine whether any other interphase proteins are also able to disrupt normal mitotic processes, when introduced into the mitotic phase. We found that a chromatin subfraction from bovine liver nuclei induced postmitotic micronuclei formation in a dose-dependent manner when injected into the prometaphase of rat kangaroo kidney epithelial (PtK(2)) cells. Close observation showed that, in the case of injected mitotic cells, the mitotic spindles were disrupted, chromosomes became scattered throughout the cytoplasm, and actin filaments were organized ectopically. In addition, when the fraction was injected into interphase cells, extra actin filaments were formed and microtubule organization was affected. In order to determine whether the micronuclei formation resulted from the ectopic formation of actin filaments, we examined the effect of the actin polymerization inhibitor, cytochalasin D. The results showed that the drug inhibited micronuclei formation. From these findings, we concluded that this chromatin subfraction contains actin polymerization activity, thus causing the disruption of mitotic spindles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.