Abstract
Thirteen bovine leukemia virus- (BLV-) negative and 22 BLV-positive Holstein cows were immunized with J5 Escherichia coli bacterin at dry off, three weeks before calving, during the second week after calving, and three weeks after the third immunization. Serum was collected before the initial immunization, immediately before the third and fourth immunizations, and 21 days after the fourth immunization. Anti-J5 E. coli IgM, IgG1, and IgG2 titers were determined by ELISA. Anti-J5 E. coli IgM titers did not differ significantly (P = .98) between groups. Increases in anti-J5 E. coli IgG1 titers were higher in the BLV-negative cows (P = .057). Geometric mean anti-J5 E. coli IgG2 titers increased fourfold in the BLV-negative cows, which was significantly higher (P = .007) than the twofold increase in the BLV-positive cows. Cattle infected with BLV may have impaired serologic responses following immunization with J5 bacterin, and response may differ according to antibody isotype.
Highlights
Enzootic bovine leukosis is a contagious disease of cattle induced by an exogenous retrovirus, bovine leukemia virus (BLV)
The disease complex is characterized by a persistent lymphocytosis which can culminate in B cell lymphoma [1]
Considering the critical role that T- and B-cell populations play in humoral immunity, the purpose of this study was to investigate the effect of BLV on the serologic response to an Escherichia coli bacterin that is commonly administered in dairy cattle
Summary
Enzootic bovine leukosis is a contagious disease of cattle induced by an exogenous retrovirus, bovine leukemia virus (BLV). Certain type 1 cytokines from CD4+ T lymphocytes, including interleukin-2 (IL2), IL12, and interferon gamma (IFNγ), are reduced during BLV infections, and this altered cytokine production was suggested to be responsible for suppressed mitogen-induced T lymphocyte proliferation [4,5,6]. BLV infection may suppress T-cell apoptosis and gene expression of proteins important in the apoptotic pathway [7]. Considering the critical role that T- and B-cell populations play in humoral immunity, the purpose of this study was to investigate the effect of BLV on the serologic response to an Escherichia coli bacterin that is commonly administered in dairy cattle
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.