Abstract

Abstract: The pH optimum of native adrenal medulla tyrosine hydroxylase activity is shifted from 5.8 to 6.4 by polyanions (heparin, dextran sulphate), salts (NaCl, Na2SO4) and the anionic buffer 2‐(N‐morpholino)ethanesulphonic acid (MES). Simultaneously, the activity at the optimal pH is increased. Kinetic studies have shown that this activation is associated with a decrease of the apparent Km of the enzyme for the cofactor 6,7‐dimethyltetrahydropterin (DMPH4) and an increase in the Vmax for tyrosine and DMPH4. The Km for the tyrosine remained unchanged. These data have been interpreted in terms of the polyelectrolyte theory. The adsorption of tyrosine hydroxylase on various affinity gels containing heparin, dextran sulphate or unsulphated polymer dextran as ligands indicate that the activation of the enzyme is mediated by electrostatic interactions with the anionic species. The site of electrostatic interaction possesses some specificity since the binding constants are higher for heparin or dextran sulphate than for NaCl or MES buffer. Moreover, 3‐(N‐morpholino)propanesulphonic acid (MOPS) a slightly structurally different buffer inhibits the enzyme activity whereas N‐(2‐acetamido)‐2‐amino‐ethanesulphonic acid (ACES) has no effect. A limited proteolytic digestion which preserves the enzymatic activity, destroys the effects of the anions. The isoelectric point and the molecular parameters of tyrosine hydroxylase are markedly altered after limited digestion. It is therefore suggested that the interaction between the hydroxylase and anionic compounds occurs on a part of the protein which is different from the active site and which is lost by proteolysis. This portion of the protein might be involved in regulation of native tyrosine hydroxylase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.