Abstract

Boussinesq modeling of wave transformation over coral reefs to date focuses mainly on wave dynamics at the laboratory scale using idealized fringing reef profiles with relatively smooth surfaces. To better understand the cross-shore wave dynamics associated with coastal wave run-up in field studies of fringing reefs, a numerical study based on the one-dimensional horizontal (1DH) weakly dispersive, highly nonlinear Boussinesq equations is carried out for two realistic fringing reefs with different reef configurations and roughness characteristics in the Republic of the Marshall Islands. A series of incident wave events are tested and compared to the field observations. The numerical simulations demonstrate that the adopted model reproduces the cross-shore sea and swell (SS) waves, infragravity (IG) waves and wave-induced setup over the rough reef flats, which are the components of wave-driven runup and coastal inundation. The model then is applied to investigate the mechanisms of IG wave generation and normal mode excitation on the reef flat. Finally, the shoreline response of waves to the variations of the surf zone seabed profile and the phase of incident waves is examined via the numerical simulations. The ability to predict shoreline runup based on nearshore pressure measurements also is considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.