Abstract

Coastal wetlands protect the shoreline and infrastructure by attenuating wind waves and reducing storm surge. It is of importance to accurately quantify the flood protection provided by vegetation. Existing numerical models for hurricane waves and storm surge are based on the phase-averaged wave action balance equation and the nonlinear shallow water equations, respectively, with the wind forcing and vegetal drag as the free surface and bottom boundary conditions. To consider the interaction of waves and surge, the phase-averaged short wave and long wave (storm surge) models can be coupled in a staggered fashion. If the time step of the wave model and storm surge model are 30 minutes and 1 s, respectively, both models would exchange information every 30 minutes. There is no iteration between the wave and surge models at each coupling interval. An alternative to this state-of-the-practice of hurricane wave and storm surge modeling is to simulate the combined wave and surge motion driven by wind and attenuated by wetland vegetation using a phase-resolving Boussinesq model. The objective of this study is threefold: 1) to demonstrate the capability of modeling wave growth by wind, wave reduction by vegetation, and the total water level (wave setup, wind setup and wave runup) using the extended FUNWAVE-TVD model; 2) to analyze the energy balance of the combined wave and surge motion; 3) to examine the momentum balance with an emphasis on the vegetal drag owing to the combined wave orbital velocity and wind-driven current velocity.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/-o_kx4hPvC8

Highlights

  • Coastal wetlands protect the shoreline and infrastructure by attenuating wind waves and reducing storm surge

  • An empirical drag coefficient has been used to represent the un-resolved physics in the flow resistance formula due to vegetation, which has to be calibrated for different wave and surge models and different vegetation conditions

  • To gain insight into the energy balance and momentum balance in the combined wave and surge motion, we examine each term in the Boussinesq-type equation using the model output

Read more

Summary

Introduction

Coastal wetlands protect the shoreline and infrastructure by attenuating wind waves and reducing storm surge. Existing numerical models for hurricane waves and storm surge are based on the phase-averaged wave action balance equation and the nonlinear shallow water equations, respectively, with the wind forcing and vegetal drag as the free surface and bottom boundary conditions. If the time step of the wave model and storm surge model are 30 minutes and 1 s, respectively, both models would exchange information every 30 minutes. There is no iteration between the wave and surge models at each coupling interval. An alternative to this state-of-the-practice of hurricane wave and storm surge modeling is to simulate the combined wave and surge motion driven by wind and attenuated by wetland vegetation using a phase-resolving Boussinesq model. The objective of this study is threefold: 1) to demonstrate the capability of modeling wave growth by wind, wave reduction by vegetation, and the total water level (wave setup, wind setup and wave runup) using the extended FUNWAVE-TVD model; 2) to analyze the energy balance of the combined wave and surge motion; 3) to examine the momentum balance with an emphasis on the vegetal drag owing to the combined wave orbital velocity and wind-driven current velocity

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call