Abstract

The perturbation method for bound states within the framework of the Shifman-Vainshtein-Zakharov sum rule method is studied on simple systems (linear harmonic oscillator, hydrogen atom) in external electric fields. It is pointed out that for stronger fields reasonable results for the ground-state energy can only be achieved when sum rules are written for the correction to the Euclidean Green function caused by the external field. Moreover, if the system is bound by a singular (Coulomb) potential, one needs to sum higher perturbative corrections to the Green function and to find a realistic approximation of the continuum contribution to the sum rules. The results are of relevance e.g. for calculations of nucleon magnetic moments and toponium properties via SVZ sum rules in QCD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call